[1] Xing Wu et al. Internet-based Remote Monitoring and Fault Diagnosis System, Lecture Notes in Computer Science, 2004, 3174:567-573. (SCI) [2] Xing Wu et al. Modeling a Web-Based Remote Monitoring and Fault Diagnosis System with UML and Component Technology, Journal of Intelligent Information Systems, 2006, 27:5-19. ( SCI, EI) [3] Xing Wu et al. Web based remote monitoring and fault diagnosis system, International Journal of Advanced Manufacturing Technology, 2006, 28(1-2):162-175. ( SCI, EI) [4] 伍星等, 基于熵度量和遗传算法的粗糙集归约方法, 振动与冲击, 2009.28(2):82-85. (EI) [5] 王宇(博士生), 伍星, 迟毅林等,基于盲解卷积和聚类的机械弱冲击声信号提取, 振动工程学报, 2009, 22(6):620-624. (EI) [6] 周俊(博士生), 伍星, 迟毅林等. 盲解卷积和频域压缩感知在轴承复合故障声学诊断的应用, 机械工程学报, 2016, (3):63-71. (EI) [7] Wang zhihai(博士生), Wu Xing, Liu Xiaoqin. Research on Feature Extraction Algorithm of Rolling Bearing Fatigue Evolution Stage Based on Acoustic Emission. Mechanical Systems and Signal Processing, 2018, 113: 271-284. (SCI) [8] Liu Chang(博士生), Wu Xing, Mao Jianlin. Acoustic emission signal processing for rolling bearing running state assessment using compressive sensing. Mechanical Systems and Signal Processing, 2017, 91:395-406. (SCI) [9] 王之海(博士生), 伍星, 柳小勤. 基于位置补偿系数距离估计的滚动轴承特征损伤敏感性评估算法研究. 振动与冲击, 2019, 38(1): 65-72.(EI)王森(博士生), 伍星, 张印辉等. 基于多尺度小波变换和结构化森林的表面裂纹分割. 光学学报, 2018, 38(8): 233-242. (EI) [10] 李华(博士生), 伍星, 刘韬. 基于信息熵优化变分模态分解的滚动轴承故障特征提取. 振动与冲击, 2018, 37(23): 219-225. (EI) |
[1] 伍星,刘畅等,一种在线状态监测系统的数据存储与处理方法,CN102332035A(国家发明) [2] 伍星, 王森, 柳小勤等. 一种钢梁裂纹的定位方法,ZL 201610886879.3 (国家发明) [3] 伍星, 王森, 柳小勤等. 一种基于图像处理的钢梁裂纹检测方法,ZL 201510916229.4 (国家发明) [4] 伍星, 周俊, 迟毅林等. 一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,ZL 201410411671.7 (国家发明) [5] 伍星, 刘凤等. 一种机械振动故障特征时域盲提取方法,ZL 201410448210.7 (国家发明) |